AxiMax 400 Auto X8L HT150C, Ceramic, 0.15 uF, 10%, 50 VDC, X8L, AxiMax, Automotive Grade | Click | horo | for | tha | 3D | modal | |-------|------|-----|-----|----|-------| | Dimensions | | |------------|------------------------| | D | 2.41mm MAX | | L | 4.32mm MAX | | LL | 25.4mm MIN | | F | 0.51mm +0.025/-0.076mm | | | | | Packaging Specifications | | |--------------------------|-----------| | Packaging | Bulk, Bag | | Packaging Quantity | 300 | | General Information | | |---------------------|----------------------------| | Series | AxiMax 400 Auto X8L HT150C | | Style | Axial | | Description | AxiMax, Automotive Grade | | Features | Automotive Grade | | RoHS | Yes | | Termination | Tin | | Lead | Wire Leads | | Failure Rate | N/A | | Qualifications | AEC-Q200 | | AEC-Q200 | Yes | | Halogen Free | true | | Specifications | | |--|---------------------| | Capacitance | 0.15 uF | | Measurement Condition | 1 MHz 1.0Vrms | | Capacitance Tolerance | 10% | | Voltage DC | 50 VDC | | Dielectric Withstanding Voltage | 125 VDC | | Temperature Range | -55/+150°C | | Temperature Coefficient | X8L | | Capacitance Change with
Reference to +25°C and 0 VDC
Applied (TCC) | 0.15, 1kHz 1.0Vrms | | Dissipation Factor | 2.5% 1 MHz 1.0Vrms | | Aging Rate | 0% Loss/Decade Hour | | Insulation Resistance | 6.67 GOhms | Statements of suitability for certain applications are based on our knowledge of typical operating conditions for such applications, but are not intended to constitute - and we specifically disclaim - any warranty concerning suitability for a specific customer application or use. This Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by us with reference to the use of our products is given gratis, and we assume no obligation or liability for the advice given or results obtained. Generated 11/18/2024 © 2006 - 2024 YAGEO